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Abstract 

One generalized form of this problem is: “3 vessels of volumes M, N and 

P contain respectively m, n and M-(m+n) liters liquid, where M=N+P, N 

>P, mM, nN and M-(m+n)P. Divide the liquid in two equal parts.” 

The solution is frequently done by trial-error. Perelman provided a 

“billiard” solution to the problem without prescriptions how to guess to 

solve it like this. There are numerous articles on this topic, but there are 

no known to us attempts for exhaustive analysis, synthesis and 

systematization of them. We consider briefly the most interesting ones 

with didactics perspective. We prescribe ideas for solutions, 

generalizations, investigations, generating of new problems and proofs, 

based on representation of the quantities of liquid in the three vessels as 

ordered triples - projective (or barycentric) coordinates of points in a 

Euclidean plane. The pourings are visualized through directed segments 

between the respective points. This representation provides good 

visualization for finding all possible solutions, the optimal one in concrete 

steps, etc. Eventual 3D-representation of the points would lead to more 

difficulties in the imagination of the spatial objects. The opportunity for 

systematical approach in seeking for solution enables creation of 

didactical approach for teaching “how to solve it”, including creation of 

Educational Dialogue Computer Programs. We consider another discrete 

optimization problem (DOP) with notion how to find the solution. It is an 

open question in didactics how to guess how to solve a DOP and we make 

some first steps in dealing with this topic. 



Introduction 

What is a Discrete Optimization Problem (DOP)? The mention of 

minimization or maximization is not always bound with Calculus. Some 

practical problems concern objects of discrete nature – a task to be done 

in minimum steps, with minimum “resources”, “costs” etc. But there are 

also non-practical funny or folklore DOP, which people create and solve 

for intellectual pleasure. DOP are interesting for the skilled students and 

they may strengthen their motivation for mathematics. A variety of 

non-practical DOP are frequently given in mathematics contests and 

Olympiads. But the common thing between practical and non-practical 

DOP is discrete mathematics. 
 

An exemplary DOP [3] (Canadian mathematical Olympiad 1981): 
Six musicians gathered at a chamber music festival. At each scheduled 

concert some of them played, while the rest listened as members of the 

audience. What is the least number of such concerts which would be 

scheduled in order to enable each musician to listen to each of the rest 

five as a member of the audience? 
 

How to solve a DOP? 

The methods of linear programming are not always helpful in discrete 

optimization. The accepted scheme for solving DOP [3] is the following: 

1) Boundedness: Suggest and prove an upper or lower bound of the 

sought quantity; 

2) Existence: Find a case, for which an optimum is reached (NEW: is 

it obligatory the upper/lower bound to be this optimum?). 
 

There is described in [5] an attempt to be shown the necessity of 1) and 2). 

In [6] and here is given an alternative approach to show the same fact. But 

here is also shown that the first step is not always obligatory. To solve a 

DOP one may have to perform a long and purposeful sequence of 

experiments, analyzing the problem and its details wider and deeper and 

improving his unsuccessful attempts to solve it. This approach is common 

to some extent for the majority mathematics problems [1]. According to 

[3] DOP usually require a variety of knowledge, techniques and skills to 

find the optimal solution in branches as graph theory, number theory, 

combinatory, etc. Here we will also discuss the importance of making of 

an appropriate visualization. The latter may significantly reduce the 

complexity of the solution and minimize the involved in it theory and 

objects. 



Didactization and importance of DOP: As discrete mathematics is 

widely used in foundation of computer science, etc, it is advisedly more 

DOP to be solved by more students. The absence of didactic materials on 

DOP-solving shows need for “didactization” of it. Some disadvantages of 

the current DOP-teaching are that:  
 

1) There are practically no DOP without solution among the ones, 

given to students or the optimal solution always equal to the upper/lower 

bound. Such DOP is suggested in [6] and variations of the three jugs 

problem with no solution - here.  

2) The prescribed in literature solutions to DOP usually include 

proofs by examples, not by regularity or a law. There are no questions 

about the number of the solutions and how to obtain each of them. No 

requirements to exhaust all possible cases systematically. Here are solved 

DOP exhaustively.  
 

DOP-didactization will also lead to: 

1) economy of time and efforts of competitors during their 

preparation for mathematics competitions, 

2) development of systematical approach in DOP solving and  

3) making DOP accessible for more students. 
 

All this is very important for students’ best performance and width and 

depth of their knowledge. The systematical finding of all solutions will 

lead to repetition, generalization, clarification and memorization for long 

time the strategies for obtaining optimality and developing combinatorial 

thinking. Long-term DOP solving will help students to develop skills to 

create optimal schemes, to get optimal decisions, etc. DOP solving 

usually shows that harmony, uniformity and equal treatment lead to 

optimality. 
  

In 2005 Google responded with about 24 000 pages related with discrete 

optimization [4]. In 2009 this number is about 326 000. The increment for 

these four years is considerable - about 14 times!  
 

It is good to leave the students first to try to solve it by themselves. 

Reasoning over the task, they will become more and more introduced with 

it, with the objects in it, with the relations between the statements in the 

text of it, etc. If someone directly shows to students the shortest way, they 

will know it without motivation [2]. Attempts for motivation without space 

for orientation in the task may fall. The suggested solution of the problem 

for the musicians here is guiding them through sequence of better and 



better hypotheses to the goal. Optimal solution students can frequently 

find when the task is already solved somehow.  
 

Solution (new) of the problem for the musicians: 

Boundedness: Denote the musicians A, B, C, D, E and F. Denote М the 

event: “A musician has listened from the audience to а performing 

colleague once”. The desired event is G: “Every musician has listened to 

each of his colleagues from the audience”. Therefore G will come true 

when M has already come true at least 6.5=30 times as each of the 6 

musicians should listen to the rest 5. Let k be the number of musicians, 

playing on the stage during a concert. The rest 6 k  are listening to 

them. Thus М comes true  6k k  times.    6f k k k   reaches 

maximum 9 for 3k  . In n concerts М comes true 9n  times. As there 

might be repeated listenings, then 9 30n   in order to have G. From 

9 30n   we have 
10

3
n  , i.e. 4n   as n is integer. Are four concerts 

sufficient to have G? We have 9.4=36 realizations of M, but the number 

of the repeated listenings between all realizations of M is unclear. Is it 

possible the musicians to be scheduled in four concerts in a way to obtain 

G? If not, then is it possible for five concerts? Is this method economic 

and promising to be quick enough? Yes, because for 6 concerts there is a 

schedule: ABCDE to play for F in the first concert, then ABCDF – for E, 

then ABCEF for D … Hence we need of at most two major steps - 

checking if the optimal number is 4optn   or 5optn  . Even if not 

5optn  , then 6optn   as we have already shown this. Of course, if not 

4optn   for 3k  , then we have to study if 4optn   for 2k   (or 

4k  , which is equivalent), because  6 8k k   and 8.4=32 in this 

case. 
 

Existence (one visualization): Denote with the ordered pair (А,В) the 

event “А has listened to В”. Hence ( , ) ( , )A B B A . Let АВС be the 

performers at the first concert. The result will be: 
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To avoid repeated pairs, let АВС be listeners for the next concert, i.e.: 

     

     

     

, , , , ,
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A D B D C D

A E B E C E

A F B F C F

 

Thus we have now 18 various ordered pairs. At the third concert there 

should play two musicians from the one triple, and one - from the other. 

Let АВЕ be the performers (without loss of generality). It is an element of 

a systematical approach to obtain all isomorphic solutions. Now 4 pairs 

are new. Definitely we cannot construct a successful scheme this way. 

How to improve the first scheme if it is possible? Are there shortcomings 

in it? It was optimal for the first two concerts, but its effectiveness rapidly 

decreased further. Let’s try with more uniformity instead of inpatient 

optimization. Cyclic scheme? If the performers during the four concerts 

are: ABC, BCD, CDE and DEF, then we have: 

1:
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    2:
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3:
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   4:
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The total number different pairs is 9 5 5 5 24     now. 

What weakness may have this scheme? It didn’t treat all the musicians in 

equal manner. A and E were playing once, while all the rest participated in 

three concerts. Is this external characteristic essential? Yes: musicians 

who play repeatedly are listened repeatedly by the others. We’ve 

exhausted cyclic schemes of this type. All concerts’ permutations give 

isomorphic solutions. We need to think exhaustively. Only if all possible 

trials are vain, then we may conclude that 4optn  . Is there a scheme in 

which in every two (subsequent) concerts there is only one repeated 

musician? Let’s try this: ABC, CDE, EFA and … ABC. Cyclic schemes do 

not work. Is there a scheme treating the all musicians equally? Is it a 

solution to the problem? The participants for four concerts are 3.4=12. 

The musicians are 6. Hence every musician should play twice. For 

example: ABC, ADE, BDF, CEF. The total number of different ordered 



pairs is 9 8 7 6 30    . 
 

Why we need two steps? In the boundedness step we have proved that 

4n . Hence the optimal value 

(*) 4optn  . 

In the existence step we have constructed a solution for some 4n . 

Hence 

(**) 4optn  . 

From (*) and (**) it follows that 4optn  . Here the necessity of both 

steps is visible. These reasonings are principally the same in all DOP. 
 

We met no DOP, where the solution is reached for a bit bigger/lesser 

number than the exact lower/upper limit found in the “boundedness” 

part, which we consider as a disadvantage of current didactics. 
 

Existence (other visualization): 

This solution is based on other visualization - by a 6 6   matrix in the 

figures 1, 2 and 3 (A, B, C … are the musicians). The visualization of “A 

has listened to D” is by filling the cell 
,A Da : 

Fig. 1: A has listened to D. 

 

With this visualization we have with one 

glance the full and the empty cells. This 

enables us to seek for optimal schemes for 

concerts with the purpose to fill the empty 

cells and to predict how many concerts are 

necessary in order to have this. Let the playing musicians in the first two 

concerts be ABC, DEF. This scheme as we saw in the previous solution is 

not optimal. The resulting matrix is: 

 

Fig. 2: ABC and DEF have performed (two 

concerts). 

 

The cells with question marks may be filled 

as A performs for B and then B for A – hence 

at least two concerts to fill the matrix. 

Generalization: if we have a pair empty 

orthogonally symmetric to each other cells with respect to the main 

diagonal, then we need at least two concerts to fill all empty cells. Let us 

  A B C D E F 

A      X    

B             

C           

D             

E           

F             

  A B C D E F 

A    ?  X X X 

B  ?     X X X 

C      X X X 

D X X X       

E X X X       

F X X X       



form a schedule of performers-listeners for the third concert. Let A 

performs for B. If A performs for C too, then BC are in the audience and 

they should perform for each other in fourth and fifth concerts. If C is a 

performer too, the others except B do not need to listen to him as his 

column shows, nor to A. If they play, B has already listened to them, as 

his row shows. Let ADE perform (and DEF in the next concert). I.e.: 

 

Fig. 3: ABC, DEF, ADE have performed (3 

concerts). 

 

Question-marks show that at least two 

concerts are necessary, i.e. at least five 

totally. It is an isomorphic visualization if 

we present the musicians as vertices of a 

hexagon and every realisation of M with a directed segment from the 

listening to the performing musician or the opposite. The hexagon must 

be gradually built to a full graph. We prefer matrix visualisation, because 

if the directed segment AB  is on the graph, the opposite BA  might be 

forgotten as the edge AB is already present. Another disadvantage of 

graph representation is the multitude of segments crossing each other (all 

sides and diagonals of the hexagon). To get G via matrix one should fill 

all white cells in it, which is quite easy.  
 

The “three jugs problem” – Discrete Optimization version: “3 jugs of 

volumes M, N and P contain respectively m, n and M-(m+n) liters liquid, 

where M=N+P, N >P. Find the minimum number pourings necessary to 

divide the liquid in two equal parts.” 
 

The solution is frequently done by trial-error. Polya provides in [1] a 

purposeful reverse sequence of steps to solve analyze it (and then to solve 

it). Yakov Perelman provided a “billiard” solution to the problem by 

construction of a parallelogram of sides N and P on integer affine 

coordinate Cartesian net, which internal and contour points represent the 

quantities of liquid in the second and the third jugs (the rest liquid is in 

the biggest jug). A better visualization of the quantities of liquid in the 

three vessels is done by using barycentric coordinates. Here we suggest 

integer projective coordinates in Euclidean plane for M=8, N=5, P=3: 

  A B C D E F 

A      X X X 

B X   ?  X X X 

C X  ?   X X X 

D X X X       

E X X X       

F X X X X X   



 
Fig. 4: Visualization of three jugs DOP by integer projective coordinates. 
 

There are shown four lines in Fig. 4 with equations X=4, X=6, Y=3 and 

Z=2. Each point denotes a state. The first coordinate denotes the quantity 

of liquid in the biggest jug, the second coordinate – in the second jug and 

the third – in the smallest one. The liquid is 8 litres constantly, because we 

do not pour it away but always from one jug to another. The sum of the 

coordinates of each point is 8. A pouring is a motion along one of these 

three coordinate directions, because moving along such line leaves 

exactly one coordinate constant and the others change. This change 

presents pouring from one to another jug, while the liquid in the third one 

remains constant. These jugs have no volume thick-marks and therefore 

we cannot interrupt a pouring until the jug, in which we pour is full. 

Therefore each motion ends over the contour of the parallelogram bound 

by the lines Z=0, Y=5, Z=3 and Y=0. Outside the parallelogram some 

coordinates become negative or the second and third component becomes 

greater than the respective jug’s volume. This visual representation 

enables easy visualization of Polya’s suggestion: the red point (4,4,0) is 

the final state. It can be reached from (4,1,3), which – only from (7,1,0), it 

- only from (7,0,1), it – etc. Other possibility: (4,4,0) from (1,4,3), … 

There are no other possibilities. There are 8 steps in the first case and 7 in 

the second one, which is the optimum. Here the “boundedness” step is 

(8,0,0) 

(6,1,1) 

(5,3,0) (5,1,2) 

(4,4,0) 

(6,0,2) 

(4,3,1) (4,2,2) 

(5,0,3) (5,2,1) 

(7,0,1) 

(6,2,0) 

(7,1,0) 

(3,5,0) 

(2,3,3) (2,4,2) 

(3,4,1) (3,2,3) (3,3,2) 

(4,1,3) 

(1,4,3) (1,5,2) 

(0,5,3) 

(2,5,1) 

X=6 

Z=2 Y=3 

X=4 



unnecessary! Is it advisable to start with the initial state (8,0,0) and 

exhaust all possible paths to (4,4,0)? No, because if we do this, the paths 

are too many as one may explore them for himself. 

If we modify the problem this way: “obtain 4 liters in some jug in 

minimum steps” instead of “divide the liquid in equal parts”, then goal 

points are seven (on the lines X=4 and Y=4). Internal points drop away 

and only (4,4,0), (1,4,3) and (4,1,3) can be reached. The first one can be 

reached in 7 steps; (1,4,3) – in 6 steps, because this point is but last one in 

the circuit for reaching (4,4,0) in 7 steps. (4,1,3) we can reach in 7 steps 

analogously. Hence the solution is 6.  

If we modify the generalized version of the problem for M, N, P this way: 

“divide the liquid in three equal parts”, then we obviously need an 

internal point , ,
3 3 3

M M M 
 
 

, i.e. there is no solution. 

 

Conclusion 

 

We’ve considered different didactical aspects of DOP-solving here. One 

of the most important approaches appeared to be the discovery of some 

high-promising visualization(s) of a certain DOP. Future goal is to 

investigate for how many DOP (or what classes of DOP) exist (or can be 

discovered) similar high-promising visualizations and how to discover 

them. 
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